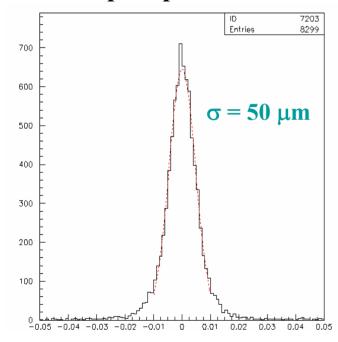
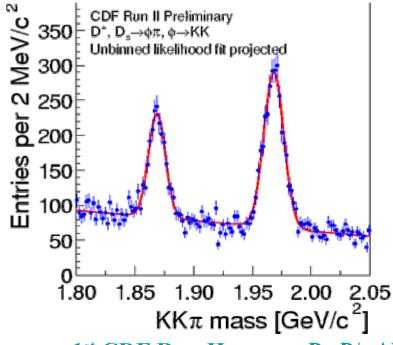
Silicon Vertex Trigger (SVT) Upgrade

- J. Adelman, I. Furic, Y.K. Kim, M. Shochet, U.K. Yang (Chicago)
- T. Liu (Fermilab)
- I. Roffilli, L. Sartori, F. Schifano, R. Tripiccione (Ferrara)
- A. Cerri (LBNL)
- A. Bardi, F. Bedeschi, R. Carosi, S. Galeotti, P. Giannetti, M. Piendibene, L. Ristori, F. Spinella (INFN Pisa)
- G. Punzi (Scuola Normale Superiore, Pisa)
- A. Annovi, M. Bitossi, M. Dell'Orso, S. Donati, P. Giovacchini (Pisa)
- M. Rescigno, L. Zanello (Rome)
- P. Catastini, A. Ciocci, S. Torre (Siena)
- T. Maruyama (Tsukuba)
- J. Bellinger, D. Carlsmith, W. Chung, C.M. Ginsburg, R. Handler, G. Ott, L.G. Pondrom (Wisconsin)

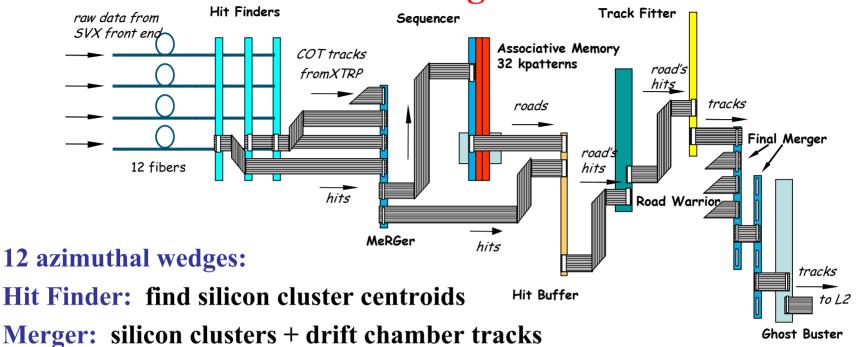

M. Shochet

Why SVT?


1st time at hadron collider:

Trigger (\sim 20 µsec) on b quarks based on lifetime.

- Important for both high- P_T and B physics. (3rd generation)
- Attach to drift chamber tracks hits from silicon detector.
- Impact parameter resolution \approx beam diameter.



impact parameter (cm)

1st CDF Run II paper: D_s - D^+ ΔM

Associative Memory: fast pattern recognition (32K patterns, "roads"/wedge) uses coarser resolution ("superstrips" ~500μm)

Hit Buffer: stores hits at full resolution; retrieves those within a road

Road Warrior: remove roads with the same hits (important in 4/5 mode)

Track Fitter: fits track candidates with a linear approximation

Ghost Buster: keeps the best track associated with each drift chamber track

Impact of SVT on the physics program

- High P_T physics:
 - Broad searches for new physics
 - High P_T b-jet
 - Missing $E_T + b$ -jet
 - $\gamma + b$ -jet
 - Higgs search
 - Higgs multi-jet trigger
 - Top (and Higgs) mass
 - $Z \rightarrow b\bar{b}$ (with SVT trigger, 95% $b\bar{b}$; without SVT, <1%)
- B physics
 - All-hadronic final states (B_s mixing, α , ...)
 - Multiple displaced tracks
 - Semi-leptonic tag
 - Lepton + displaced track

Why Upgrade SVT?

• A critical issue for the trigger is deadtime.

$$DT_{L2} \sim R_{L1} \times \overline{t}_{L2}$$

- At current luminosities ($< 10^{32}$), both high-P_T and *B* physics level-1 triggers have to be prescaled because of SVT execution time.
- At Run IIb luminosity, the level-1 rates become really big:

- 2-track *B* trigger: 49 KHz @ 1.5×10^{32}

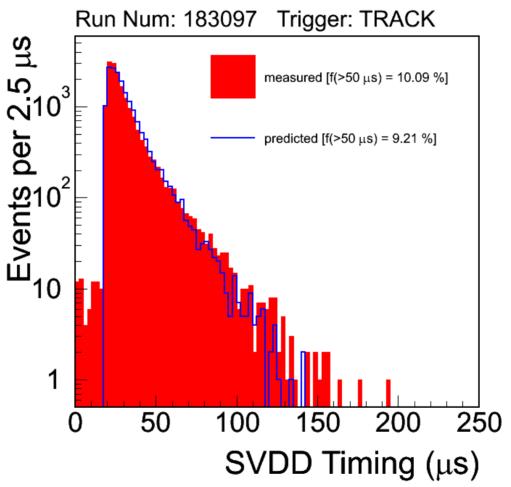
- $Z \rightarrow b\overline{b}$ trigger: 26 KHz @ $3x10^{32}$

- · There are many improvements under way for Run IIb.
 - L2 decision time
 - Detector \rightarrow L3 transfer rate
 - L3 → Feynman Center transfer time
- Physics program limitation in Run IIb: SVT execution time

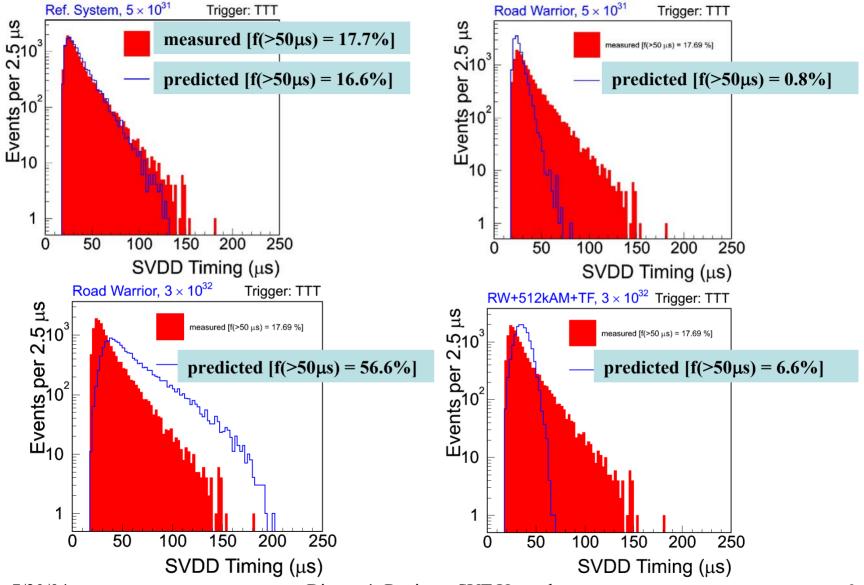
Preserving CDF Triggering Capability

- Maintaining muon trigger acceptance in 1.0< $|\eta|$ <1.5.
 - XFT may require outer superlayer in Run IIb
 - ⇒ trigger efficiency drops by ~ 50%
 - Using muon stubs as SVT seeds can restore the performance.
- Insurance against further COT degradation.
 - larger XFT fake rate ⇒ more track candidates
 - worse pointing resolution \Rightarrow need for more patterns

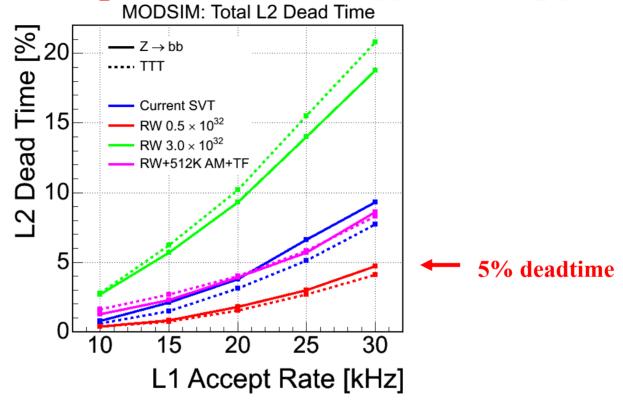
What to do about it


- Reduce SVT execution time.
 - As luminosity ↑, SVX hit density ↑ (more with 396 nsec bunch spacing)
 - ⇒ more hits to process

but more importantly

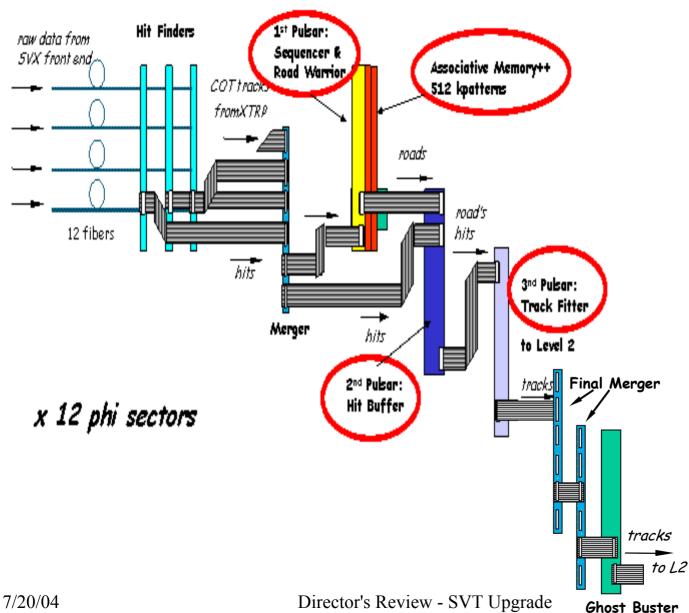

- ⇒ more track candidates to fit because of the number of hits in a road
- Reduce the road combinatorics by using narrower roads.
 - \Rightarrow Increase the number of roads.
- Reduce the fit execution time.
 - ⇒ Build a faster Track Fitter.

How much improvement can we get?


• Model SVT timing: $t_{SVT} = aN_{\text{hits}} + bN_{\text{comb}}$ where a and b as well as N_{hits} and N_{comb} vs \mathcal{L} are determined from data.

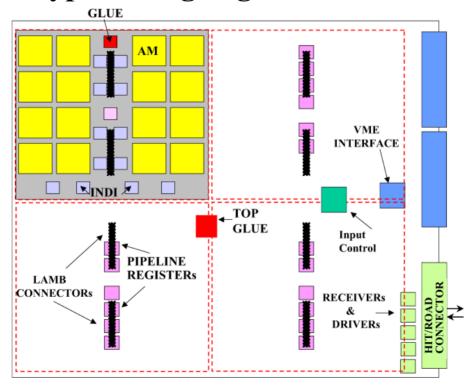
Extrapolate to high \mathcal{L} with & without upgrades

What we could gain (after other trigger/DAQ upgrades)


Maximum L1 SVT-trigger rates for 5% L2 deadtime @ 3x10³²

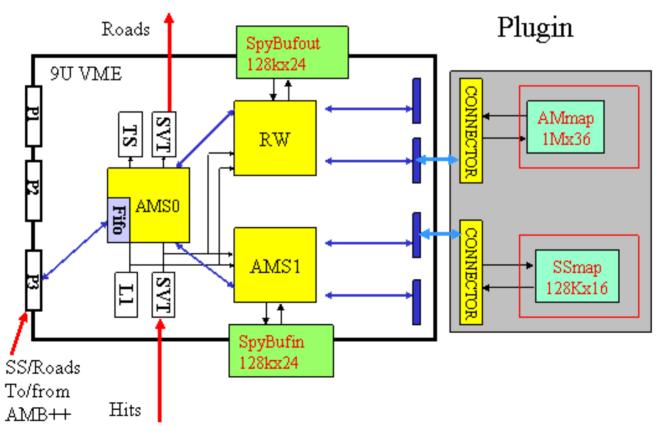
Current SVT	Upgraded SVT	
13 KHz	23 KHz	

Specifically what will we do?

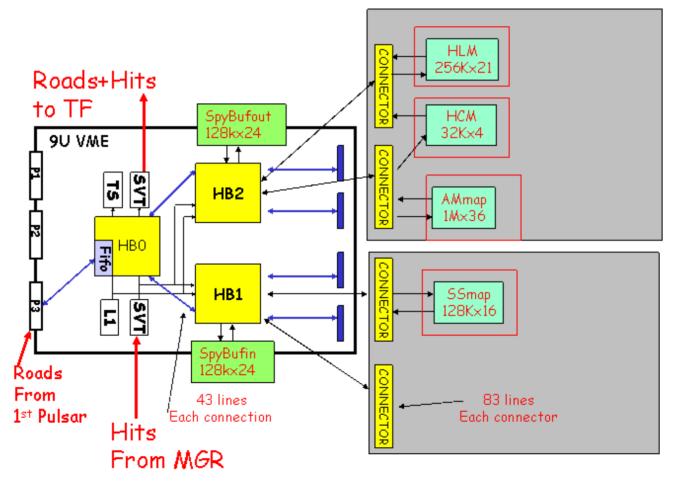

- Build a minimum of new hardware.
 - **Use LHC design + new CDF Pulsar boards.**
 - New Associative Memory (more roads)
 - Prototypes being constructed/tested (based on LHC design)
 - Sequencer firmware to be added to existing Road Warrior Pulsars.
 - New Hit Buffer (handle larger # of roads & faster)
 - Pulsar board with memory on mezzanine
 - New Track Fitter (handle larger # of roads & faster)
 - Pulsar board with memory on mezzanines
- ⇒ Build Pulsar mezzanine cards.
 - Write Pulsar firmware based on existing functionality.
 - Upgrade online and offline software for new hardware.

The Upgraded SVT

New AM++ (fully funded by INFN)


- Track finding for all patterns simultaneously at high rate.
- AM chip: standard cell chip; prototype in production
- LAMB: prototype ready for testing with FPGA
- AM++: prototype testing begins next month

AM Sequencer + Road Warrior


- Pulsar board with firmware to be sequencer for AM system.
- Road Warrior function done before Hit Buffer. (speed)
- Need simple mezzanine card with memory.

Pulsar

Hit Buffer

- Hits stored with full resolution by superstrip.
- Roads sent by AMS/RW are sent out with raw hits attached.
- Pulsar board with HB firmware + mezzanines with memory.

Track Fitter

- Receives a road and forms track candidates (combinations).
- Calculates d, c, φ , and fit χ^2 using a linear approximation.
- Transmits tracks that pass a χ^2 cut.
- Port existing Track Fitter firmware; build mezzanines.

Sketch of the Track Fitter

Software

- Existing online and offline software has to be modified for the new hardware.
 - board simulation
 - creating roads and fitting constants
 - online diagnostics
 - online operating code (initialization)
 - readout code
 - offline tools
 - infrastructure, e.g. database code

Commissioning

- Test stands exist at Fermilab, Pisa, and Chicago.
- First test boards at full speed in test stand with other Pulsars as transmitters and receivers.
- Test with CDF data without impacting normal data taking.
 - Existing SVT fanout boards can send data to new board with output compared to expectation.
- When Track Fitter is ready, it can be installed immediately to get speed advantage.
- When AM system, Hit Buffer, and Track Fitter are ready, they can all be installed.

US Cost

(unburdened)

- Spares included
- Pulsar & transition cards identical to those built in the past few months
- Mezzanine cards based on recently built boards and price of chosen memory chip

•	Pulsar boards	28x\$4.1K		\$115K
•	Mezzanine cards	total of 72		28K
•	HB transition cards	14		4K
•	Cables & connectors			1K
•	Mezzanine engineering			39K
•	Firmware engineering			53K
			Total	\$240K

Personnel

- We have a large group of physicists working on SVT.
- No person is responsible for more than 1 item.
- Project management: M. Shochet, A. Annovi
- Coordination in Italy: P. Giannetti
- AM++: A. Bardi, L. Tripiccione, A. Annovi, P. Giovacchini, I. Ruffilli
- AMS/RW: F. Spinella, M. Piendibene
- Hit Buffer: I. Furic, T. Maruyama, T. Mansikkala (eng.)
- Track Fitter: J. Adelman, U. Yang
- Mezzanine: F. Tang (eng.), [M. Shochet]
- Software: Wisconsin group, M. Rescigno, A. Cerri, S. Donati, R. Carosi

Schedule Milestones

(Pulsar boards will be ordered by October, 2004)

•	AM++	begin production	01/05
•	AMS/RW	firmware complete, full testing begins	05/05
•	Hit Buffer	firmware complete, full testing begins	04/05
•	Track Fitter	firmware complete, full testing begins	04/05
•	Mezzanine cards	begin production	11/04
•	SVT Upgrade rea	dy for installation	06/05

Specifications Notes

– AM++ chip

AM++ VME board

AM++ mezzanine card

- AM mini-backplane board

common Pulsar mezzanine

- AMS/RW I/O and firmware

Hit Buffer I/O and firmware

Track Fitter I/O and firmware

Software additions

final version exists

final version exists

final version exists

final version exists

draft exists; final by 8/15/04

final version exists

final version exists

draft exists; final by 8/31/04

task list exists

Conclusion

- The SVT upgrade is important to the CDF Run II physics program.
- We have a design and a team that can complete the job on schedule.
- A significant fraction of the hardware is just copies of existing boards. Most of the rest is already in the prototype stage.